

Development of Detailed and Reduced Kinetic Mechanisms for Surrogates of Petroleum-Derived and Synthetic Jet Fuels:

Drexel Flow Reactor Studies at Low and Intermediate Temperatures

David L. Miller and Nicholas P. Cernansky

Matthew Kurman and Robert Natelson

Department of Mechanical Engineering and Mechanics Drexel University, Philadelphia, PA 19104-2875

MACCCR Fuels Research Review
Los Angeles, CA
15-17 September 2009

Research supported by the Air Force Office of Scientific Research

Program Overview

- Objectives:
- 1) Explore the preignition oxidation behavior of petroleum and alternative jet fuel surrogate components
- 2) Quantify the combustion properties of the surrogate components
- 3) In Year 2, n-dodecane and n-butylcyclohexane studies
- Approach:
 - React the fuel/oxidizer/diluent systems under well-controlled conditions in our Pressurized Flow Reactor (PFR)
 - » Perform bench scale tests on n-dodecane and n-butylcyclohexane
 - Coordinate with Stanford flow reactor experiments at higher temperatures
 - » Monitor reactivity and collect gas samples as a function of experimental and reactant conditions
 - » Perform detailed chemical analysis of extracted gas samples
 - Mechanistic analysis and development
 - Provide data for chemical kinetic model development

Motivation

- Detailed kinetic models will aid in the development and optimization of the next series of advanced air-breathing propulsion systems and their use with alternative fuels
 - Model development and verification require quantitative characterization of combustion properties
- Oxidation at low and intermediate temperatures (500-1100 K) in model validation and particularly important in CI engines
 - High-quality, reproducible data quantifying the combustion of possible JP-8 surrogate components at these conditions is scarce

PFR Facility

Representative Reactivity Map Profile

- CO is a major indicator of reactivity at low temperatures, we also measure water with the MS which tracks the CO
- Negative Temperature Coefficient (NTC) region is the shift from low to intermediate temperature chemistry

GC/MS/FID Facility

- Samples injected at 570 Torr into GC/MS/FID for analysis
- Separation aided by sub-ambient initial oven temperature and then ramped up to 250°C
- Supelco Petrocol DH column in GC
 - 100 m, 0.5 μm film thickness
 - **0.25 mm OD, 1250 Phase Ratio (β)**
- MS parameters
 - Ion source 200°C
 - Electron ionization -70 eV
 - Multiplier voltage 1456 V
 - Emission current 100 μA

GC/MS/FID Analysis

MS database program

Species are identified from GC/MS chromatograms and comparison to mass spectra from the NIST MS 2.0 database of 150,000 compounds

Other Measurements

- Measure CO/CO₂/O₂ with on-line analysis
 - Errors are ±50 ppm for CO and CO₂ from NDIR analyzer, and ±1250 ppm for O₂ from electrochemical oxygen cell
- Measure F/O₂ ratios with GC/MS/FID combined with O₂ Analyzer to calibrate equivalence ratio before each experiment
- FID Calibration of lighter hydrocarbons (n<7) uses purchased gasphase standards at 15, 100, and 1000 ppm
- Calibration of heavier species is achieved with correction factors of FID signals that account for differences in carbon, hydrogen, and oxygen numbers between different molecules of similar structures (Schofield, 2008)

Review of Year 1 Work

- A series of n-dodecane experiments was conducted at low temperatures (550-850 K) at a range of equivalence ratios (0.2-0.9)
 - Carbon balances were not acceptable on average 50%, and as low as 20%, depending on the temperature

Obviously, the intermediates from the oxidation of n-dodecane posed new

analytical problems

Past PFR Work

- Identify sources of poor carbon balances
 - Sample/Hold System (heated storage loops) was shown to "degrade" sample over the 18 hours of storage between collection and analysis of final loop
 - Transfer lines between PFR cart GC were found to produce problems through a variety of mechanisms: cold spots at valves and fittings (condensation), poor flow patterns (dead volumes), heated stainless steel lines (reaction)
- System redesign samples are transferred directly to the GC/MS/FID with heated, glass-lined stainless steel transfer lines
- Operational adjustment PFR is maintained at operating temperature while each sample is analyzed by GC/MS/FID
- Carbon balances are now greater than 80% for n-dodecane
 - Number of species measured for n-dodecane increased from 30 to 115

Experimental Conditions

	n-Dodecane	Uncertainty	n-Butylcyclohexane	Uncertainty
Fuel (ppm)	531	± 8	1082	± 19
O ₂ (ppm)	42,100	± 1250	42,100	± 1250
ф	0.23	± 0.05	0.38	± 0.05
N ₂	balance	-	balance	-
Pressure (atm)	8.00	± 0.025	8.00	± 0.025
Residence time (ms)	120	± 10	120	± 10

- Fuel concentrations, and intermediate species in the following graphs, are the average of three experiments for each fuel
- Fuel uncertainties, and intermediate species error bars in following graphs, are ± 1 standard deviation of the three experiments
- O₂, equivalence ratio, pressure, and residence time uncertainties are based on instrumental uncertainty

Reactivity Mapping of n-Dodecane

- 550 K < T < 700 K: increasing reactivity
- T ~ 700 K: NTC start
- 700 K < T < 850 K: NTC region
- Minimum carbon balance 80%; 115 peaks measured

- In the low temperature regime, CO₂ is produced from oxygenates such as cyclic ethers (Glaude et al., 2002)
- H₂O was measured using the MS and matched the CO trend

Key Alkenes from n-Dodecane

propene

trans-3-dodecene

- Other alkenes, dienes, and alkynes produced at smaller quantities
- In NTC region, H-abstraction of alkyl radical by O₂ produces conjugate alkene (Ciajolo and D'Anna, 1998)

Alkane Oxidation Mechanism – Alkene Formation

- Low temperature reactivity: low levels of alkenes produced from β-scission of alkylhydroperoxy (QOOH·) radicals
- NTC: high levels of alkenes produced from β-scission of alkyl (R·) radicals and H-abstraction by O₂ of R·

Key Aldehydes from n-Dodecane

- Aldehydes peaked near start of NTC
- 1,3,5-trioxane probably from formaldehyde
 - Up to 40% of carbon is measured as 1,3,5-trioxane at NTC start
- Other aldehydes produced at smaller quantities

Drexel UNIVERSITY

Alkane Oxidation Mechanism – Aldehyde Paths

- Low temperature reactivity: low levels of aldehydes produced from β-scission of alkylhydroperoxy (QOOH·) radicals and destruction of alkylperoxy (RO₂·) radicals
- NTC start: high levels of aldehydes produced from ketohydroperoxides (OROOH)

Cyclic Oxygenates from n-Dodecane

- Alkylated lactones and cyclic ethers (mainly 5-membered rings) were measured
 - Pathway to 5-membered rings provides chain branching, while 3-, 4-, or 6-membered rings provide chain propagation (Westbrook et al., 2009)
- Tetrahydrofurans increased in NTC region
- Dagaut et al. (1994) measured cyclic ethers from n-decane oxidation at 550-1150 K and 0.1-1.5 φ, but did not observe lactones

Alkane Oxidation Mechanism – Cyclic Ether Paths

• NTC region: Cyclic ethers produced from decomposition of alkylhydroperoxy (QOOH·) radicals

Ketones from n-Dodecane

- Ketones, diones, and enones (unsaturated ketones) peaked at NTC start
- Alkylhydroperoxy radicals (QOOH·) can decompose to ketones (Glaude et al., 2000)

Key Carboxylic Acid from n-Dodecane

- Acetic acid peaked prior to NTC start
- Decomposition of ester can yield acid and alkene (Schwartz et al., 2006; Metcalfe et al., 2007)
- Esters not observed in present work, but cyclic esters (lactones) observed
 Schwartz et al. (2006), J Phys Chem A 110:6643-6648.

Metcalfe et al. (2007), J Phys Chem A 111:4001-4014.

All classes

accounting for ≥ 1%

of reactant, fractions

of reactant and

product calculated

by C-atoms

Temperature (K)	550	640	700	750	830
Classes accounting for ≥ 5% of reactant, listed in descending order	dodecane, aldehydes	aldehydes, CO, dodecane, lactones, ketones	aldehydes, CO, lactones	aldehydes, dodecane, THF's, alkenes, CO, ketones	dodecane, alkenes, THF's, aldehydes

- Modifications to the PFR improved carbon balance which will help for reaction pathway analysis and model development
- CO, CO₂, and aldehydes all peaked at start of NTC
- Different hydrocarbon classes were predominant at different reaction conditions:
 - Low temperature (lactones and ketones)
 - NTC start (lactones)
 - Over NTC region (alkenes, tetrahydrofurans, and ketones)
- Novel observations, compared to past work of lighter hydrocarbons at these temperatures, included the identification of many species with two O atoms - lactones, carboxylic acids, and diones

Reactivity Mapping of n-Butylcyclohexane - nBCH

- 600 K < T < 700 K: increasing reactivity
- T ~ 700 K: NTC start
- 700 K < T < 850 K: NTC region
- Minimum carbon balance 95%; 65 peaks measured

H₂O was measured using the MS and matched the CO trend

Drexel UNIVERSITY

Key Straight-chain Alkenes from n-BCH

• Straight chain alkenes were C₂₋₄ and thus likely produced from n-butyl chain

Key Cycloalkenes from n-BCH

- Butylcyclohexenes highest in NTC region where overall reactivity is low
- In high temperature methylcyclohexane oxidation, β-scission of cyclohexyl radical yielded cyclohexene (Zeppieri et al., 1997)

Key Aldehydes from n-BCH

- Aldehydes highest around NTC start
- 1,3,5-Trioxane polymerized from formaldehyde during sampling

Acetic acid peaked around NTC start

Key Cycloketones from n-BCH

2-cyclohexen-1-one

Cyclopentanones and cyclohexanones peaked around NTC start

A dicyclohexane, tetrahydrofuransubstituted cyclohexanes, lactonesubstituted cyclohexanes, an alkylated C₁₀ cyclopentene, and an alkylated C₁₀ diene were measured at relatively significant (>10 ppm) quantities, particularly in the NTC region

• In high temperature n-propylcyclohexane oxidation, Ristori et al. (2001) considered isomerization of cyclohexyl radicals to yield alkenyl radicals, similar to our observation of 2,5-dimethyl-3-vinyl-4-hexen-2-ol

Class Analysis - n-BCH

All classes

accounting for ≥ 1%

of reactant, fractions

of reactant and

product calculated

by C-atoms

Temperature (K)	600	670	715	775	820
Classes accounting for ≥ 5% of reactant, listed in descending order	n-BCH	aldehydes, CO, ketones, n-BCH	aldehydes, n-BCH, CO, ketones, alkenes, cyclic ether-substituted cycloalkanes, bicycloalkanes	n-BCH, alkenes, aldehydes, cyclic ether-substituted cycloalkanes	n-BCH

- n-Butylcyclohexane experiments were conducted with carbon balances greater than 95% in the new setup, measuring 65 intermediates
- C₂₋₄ straight-chain alkenes produced from n-butyl chain
- Larger species measured were cycloalkenes, cycloketones, and multiring species (cycloalkane / tetrahydrofuran, cycloalkane / lactone, and dicycloalkane)
- Different classes were predominant at different reaction conditions:
 - low temperature (aldehydes, cycloketones, and acetic acid)
 - over the NTC region (cycloalkenes and multi-ring species)

Summary and Future Work

- The PFR facility has been modified to improve the carbon balance
 - Sample storage was eliminated
 - Stainless steel lines were replaced with glass-lined stainless steel
 - Controlled Cool Down now a Staged Cool Down
- n-Dodecane was studied at 550-830 K, 8 atm, $\phi = 0.2$
- n-Butylcyclohexane was studied at 600-820 K, 8 atm, $\phi = 0.4$
- Similar classes of intermediates were formed in both studies suggesting similar low temperature behavior
- Next hydrocarbon will be selected with the consortium